「population」タグアーカイブ

EXCEL2:サンプリング /統計関数で統計学事始め

まず、統計学入門のページを検索すると、2つのキーワードが出てきます。

母集団(population), 標本(sample)

「エクセル関数」から「統計関数」を抽出し、簡単な分類を試してみました。

■ 統計関数で知っている。使ったことがある。
データ個数(5)
COUNT COUNTA COUNTBLANK COUNTIF COUNTIFS
平均値 (5)
AVERAGE AVERAGEA AVERAGEIF AVERAGEIFS TRIMMEAN
最大値と最小値 (4)
MAX MAXA MIN MINA
順位 (5)
LARGE SMALL RANK RANK.EQ RANK.AVG

■ 情報処理技術者試験で学習。実務でも一部使ったことがある。
分散 (6)
VAR.P VARP VARPA VAR VAR.S VARA
標準偏差 (6)
STDEV.P STDEVP STDEVPA STDEV STDEV.S STDEVA

■ 実務で使ったことはないが、統計関数で知っている
中央値と最頻値 (4)
MEDIAN MODE MODE.SNGL MODE.MULT
度数分布 :区間配列 (1)
FREQUENCY
平均値(相乗平均)(調和平均) (2)
GEOMEAN HARMEAN
平均偏差 (1)
AVEDEV
百分位数 (6) :率
PERCENTILE PERCENTILE.INC PERCENTILE.EXC
PERCENTRANK PERCENTRANK.INC PERCENTRANK.EXC
四分位数 (3) :戻り値(0%,25%,50%,75%,100%)
QUARTILE QUARTILE.INC QUARTILE.EXC

■ サンプル例によっては説明を読めば理解はできる。専門的で手ごたえがある。
変動 (1)
DEVSQ
標準化変量 (1)
STANDARDIZE
歪度、尖度 (3)
SKEW SKEW.P KURT
相関係数 (2)
CORREL PEARSON
共分散 (3) :
COVAR COVARIANCE.P COVARIANCE.S
二項分布 (8) :成功率
BINOM.DIST BINOMDIST BINOM.DIST.RANGE BINOM.INV CRITBINOM
NEGBINOM.DIST NEGBINOMDIST
超幾何分布 (2) :母集団、標本数
HYPGEOM.DIST HYPGEOMDIST
ポアソン分布 (2) :事象の平均
POISSON POISSON.DIST
正規分布 (4) :平均、標準偏差、累積確率
NORM.DIST NORMDIST NORM.INV NORMINV

■ 専門的で、関数を学習してもよく解らない。実例も直観で理解できない。
回帰直線による分析 (6) :予測に使うx
FORECAST TREND SLOPE INTERCEPT LINEST RSQ
指数回帰曲線による予測 (2)
GROWTH LOGEST
正規分布 (10)
NORM.S.DIST NORMSDIST NORM.S.INV NORMSINV PHI GAUSS
LOGNORM.DIST LOGNORMDIST
LOGINV LOGNORM.INV
母集団に対する信頼区間 (3) :有意水準、標準偏差
CONFIDENCE CONFIDENCE.NORM CONFIDENCE.T
下限値〜上限値の確率 (1)
PROB
カイ二乗分布 (6) :自由度
CHISQ.DIST CHIDIST CHISQ.DIST.RT CHISQ.INV CHIINV CHISQ.INV.RT
カイ二乗検定 (2) :実測値、期待値
CHISQ.TEST CHITEST
t分布 (7) :自由度
T.DIST T.DIST.RT T.DIST.2T TDIST T.INV T.INV.2T TINV
t検定 (2) :平均値
T.TEST TTEST
Z検定 (2) :正規母集団の平均
Z.TEST ZTEST
F分布 (6) :自由度
F.DIST F.DIST.RT FDIST F.INV F.INV.RT FINV
F検定 (2) :母分散(帰無仮説)(対立仮説)
F.TEST FTEST
フィッシャー変換 (2) :
FISHER FISHERINV
指数分布関数 (2) :
EXPON.DIST EXPONDIST
ガンマ分布 (7) :
GAMMA GAMMA.DIST GAMMADIST GAMMA.INV GAMMAINV
GAMMALN GAMMALN.PRECISE
ベータ分布 (4) :
BETA.DIST BETADIST BETA.INV BETAINV
ワイブル分布 (2) :
WEIBULL WEIBULL.DIST

今回のところは、以上になります。